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Second-order supercavitating hydrofoil theory 

By C.  F. CHEN 
Hydronautics, Inc., Rockville, Maryland 

(Received 5 January 1962) 

The second-order problem of Helmholtz flow past lifting hydrofoils and sym- 
metric struts has been formulated and solved. The solution involves elementary 
operations on the known solutions of the first-order problem. The second-order 
lift and drag coefficients are given in integral form. Results obtained for a flat 
plate at  incidence and a symmetric wedge agree with the exact solutions up to the 
second order. In  terms of quantitative improvements, the present second-order 
theory predicts a lift coefficient for a flat plate at  45" incidence with an error of 
8 yo, and a drag coefficient for a symmetric wedge of 50" included angle with an 
error of 5 %; the corresponding angles at  which the linear theory would predict 
force coefficients incurring the same errors are 5" and 15" respectively. 

1. Introduction 
In this paper, we are concerned with Helmholtz flow past hydrofoils; the flow 

may detach both at  the leading and the trailing edges, as in the case of lifting 
supercavitating hydrofoils, or at both sides of the trailing edges of finite thickness, 
as in the case of symmetric struts. The pressure in the cavity is considered con- 
stant and equal to that of the undisturbed stream; the cavity length is infinite. 
Exact solutions of Helmholtz flow past rectilinear shapes have been given by 
Rayleigh (see Lamb 1945, p. 102) for a flat plate at  incidence, and by Bobyleff 
(see Lamb 1945, p. 104) for a symmetric wedge. The elegant method of Levi-Civita 
for curved boundaries (see Milne-Thomson 1950, p. 300)) unfortunately, only 
gives exact solutions for a specified Q function, whose real part is the direction 
and whose imaginary part is related to the magnitude of the velocity vector. 
Iteration or approximation methods must be resorted to for treating either the 
direct problem of finding the pressure on given shapes, or the inverse problem 
of finding the shape corresponding to a pressure distribution. In  a paper dealing 
with flows with finite or infinite cavities, Wu (1956) has calculated the hydro- 
dynamic characteristics of a circular arc hydrofoil in Helmholtz motion by 
truncating the infinite series for the Q function and satisfying the condition on 
the slope and radius of curvature at  two end-points of the circular arc. With 
increased speeds of displacement vessels, underwater missiles, and hydrofoil 
craft, the propeller blades, hydrofoils, and struts involved began operating with 
long trailing cavities. When the cavitation number, i.e. the non-dimensional 
pressure difference between the free-stream value and that in the cavity, is small, 
the hydrofoils and struts may be regarded as in Helmholtz motion. It soon 
became apparent that the method of Levi-Civita was too complicated to allow 
quick estimates of performance or to provide the required design information. 
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Recognizing the fact that the hydrofoils concerned are usually at small angles 
of incidence and the struts are usually thin, Tulin, in a series of papers (Tulin 
1953; Tulin & Burkart 1955; Tulin 1956), has developed the linearized theory for 
such flows including the case of finite cavitation number for which the cavity is of 
finite extent. It is well known that for flow past airfoils of zero thickness, the 
linearized theory yields force coefficients (in this case, only the lift coefficient) 
which are correct to the second order. This fortunate, though fortuitous, circum- 
stance does not present itself in the case of flow past supercavitating hydrofoils. 
The force coefficients obtained by applying Tulin’s linearized theory are only 
correct to the first order ; these include the cavity drag coefficient which is of the 
same order of magnitude as the friction drag coefficient. For hydrofoils operating 
in a seaway, the wave induced angle of incidence may reach such values that 
linear theory is inadequate; propeller blades operating off the design condition 
may experience the same increase in the angle of incidence. 

In  view of these facts, it would then seem necessary to pursue the approximate 
theory to the second order just to yield the same effectiveness as the linear theory 
for airfoils. Unlike the second-order theory for airfoils (Lighthill 1951; Van Dyke 
1956), in which the main objective is to obtain more acourate pressure distribu- 
tions, we are interested in obtaining more accurate force coefficients. The cross- 
coupling between the foil thickness and lifting effects found in airfoils has no 
counterpart in supercavitating hydrofoils as long as the upper foil surface lies 
within the cavity. 

We follow the procedure of Lighthill (1951) in expanding the velocity com- 
ponents into power series in 6, which characterizes the size of disturbances. 
Through substitution of these series expansions of the velocity components 
into appropriate boundary conditions, the first- and second-order problems 
present themselves. Unlike the airfoil case, the boundary-value problems 
associated with the first- and second-order approximations are quite different; 
the problem associated with the latter is more difficult. Solutions have been 
obtained for both the lifting and the symmetric case; these contain integrable 
singularities at  the leading edge except for blunt-nose struts for which edge 
correction has been applied. Calculations have been carried out for a circular 
arc hydrofoil at incidence and a symmetric wedge. Results obtained for a flat 
plate, which is a circular arc of zero curvature, and for a syqmetric wedge agree 
with the exact solutions of Rayleigh and Bobyleff to the second order. In the 
following sections, only the lifting case is presented in detail; results for the 
symmetric case are stated. 

2. Series expansions of the velocity components 
Let a lifting, supercavitating hydrofoil of unit chord with bottom shape €to(%) 

be in a uniform stream of incompressible, inviscid fluid of velocity U with angle 
of incidence €a, see figure 1. The small parameter 8 characterizes the size of the 
small disturbances. The co-ordinate axes z and y are chosen such that 

fO(0) = f o ( l )  = 0. 
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Let the upper and the lower cavity shapes be denoted by eg,(x) and sg,(x) respec- 
tively. The velocity components u, w, and the cavity shapes are expanded into 
power series in 8: 

(1) 

(2) 

u = U(1+€U1+€2U2+E3U3+ ...), 

w = U(ev, + €2W2 + €3V3 + . . .), 

FIGURE 1. Co-ordinate system. (a) Lifting hydrofoil; (b )  symmetric strut. 

(Here and subsequently, only the upper cavity shape is treated in detail since the 
operations on egt(x) are quite similar to those on sg,(x).) The velocity components 
under the integral sign in (3) are evaluated on the cavity boundary. The problem 
is to find an analytic complex velocity w(z) = u - iw, where z = x + iy, with singu- 
larities admitted at the leading edge and satisfying the following boundary 
conditions: that the flow be tangent to the foil, 

where the prime denotes differentiation with respect to the argument, that the 
pressure on the cavity be constant and equal to that of the free stream, 

(5) 

21-2 
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where w* denotes the complex conjugate of w, and that at  infinit,y 

u = ucos €a, 

v = U sinsa. 

The Kutta condition at the trailing edge requires that w( 1) be bounded. In  super- 
cavitating flow past struts, the Kutta condition is replaced by the juncture 
condition, i.e. the slope must be continuous at  the body-cavity juncture 
(Tulin 1953). Other changes to be made in the boundary conditions are quite 
obvious. 

When series expansions for u and v are substituted into the cavity shape expres- 
sion (3) and the boundary conditions (4) and (5 ) ,  noting that velocity components 
away from the x-axis may be obtained by Taylor series expansions about the 
x-axis, and using a suffix to denote partial differentiation we have 

The velocity components and their derivatives are evaluated at  the x-axis, 
y = 0 + or 0 - as the case may be. The conditions at infinity become 

To order B ,  the boundary conditions are 

v1 = f h ( X ) ,  y = 0- ,  0 <.x < 1, 

vl = a, u1 = 0 at infinity; 

the upper cavity shape is 

The linearized problem for symmetric struts has been solved by TuIin (1953), 
and for lifting hydrofoils, by Tulin & Burkart (1955). The second-order problem, 
i.e. to order e2, has the following boundary conditions: 

(13) 
d 

212 = ( E , [ z C l f O b ) l ,  Y = 0-2 (0 < x < 11, 

v2 = 0, u2 = - 4a2 at infinity. (15) 
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Since by conditions (1  l),  u1 = 0 and by continuity 

vly = -ulz = 0 when x > 0, y = 0 + ,  

335 

the second-order upper cavity shape is 

The first- and the second-order pressure coefficients along the bottom surface 
of the hydrofoil are easily found to be 

c,, = - 2Ul, (17)  

(15) and c,, = - 3[u, + i (uf  + vf) + UIY fo(x)]. 
We note here that the difference between the second-order problem for super- 

cavitating flow past a hydrofoil and that for flow past an airfoil is the absence of 
conditions on u2 off the airfoil. This fact makes the second-order problem for 
airfoils formally the same as the first-order problem, and the formal solution is 
readily obtainable. 

3. Solution of the second-order problem 
For the solution of the lifting problem, we first introduce the transformation 

c =  <+iq = - (z)$,  (19) 

where that branch of the complex square root is taken which is positive on 
y = 0 -I-, x > 0, and negative on y = 0 - , x > 0. The entire z-plane, except the 
semi-infinite slit along the positive x-axis, is transformed into the lower half of 
the 5-plane. Let now 

the boundary conditions (13)) and (14) become 

and 

- i d  
?I2 = 7 -[Z1fo(<)], 7 = 0-,  0 < [ < 1 4 at 

( 2 2 )  

The conditions at  infinity stay unaltered, and the Kutta condition must be applied 
at  5 = ( 1 , O -  ). It is noted here that the condition of irrotationality has been 
used in re-writing equation (14) into (22). The solution is obtained by inspection: 

where (33a) 
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and Cauchy’s principal value of the singular integral is implied. The last term in 
equation (23) is the compIex velocity arising from a slope distribution of 

along r,~ = 0 - , 0 < 6 < 1, which satisfies the Kutta condition at  6 = 1 and 
vanishes at infinity. The third term in (23), which is successively imaginary, 
real, and imaginary along the 6-axis in the intervals 6 < 0 , O  < 6 < 1, and > 1 
respectively, is the homogeneous solution (Cheng & Rott 1954) which is needed 
here to satisfy the Hutta condition, thus rendering the solution unique. 

It is seen that solution (23) satisfies the boundary condition at infinity, 

- w2(m) = -L@2 - - l a 2  
2 1 -  2 9 

since a t  infinity W1([) - - ia + O( [ <I-*). The Kutta condition is satisfied by virtue 
of the third term. In 0 < 6 < 1 , y  = 0 - , the imaginary part of the first two terms 
of (23) 

The last term in the above expression is cancelled by the imaginary part of the 
last term in (23); condition (21) is satisfied. For 6 > 1 , y  = 0 - , the last two terms 
of (23) have no real parts, and the real parts of the first two terms 

which is exactly condition (22). In  the same manner, one can readily show that 
for 6 < 0, y =. 0 - , ap satisfies (22). 

For symmetric struts, the second-order solution is 

where (24a) 

The last term in (24) is the complex velocity arising from a thickness distribution 
whose slope is 

r f ; ( z fu l ( s )  as, for o < x < 1, y = o k, 

whose real part vanishes for x > 1, y = 0 & , and satisfies the juncture condition 
(Tulin 1953). It can be readily shown that solution (24) satisfies all the boundary 
conditions specified. 

0 
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The lift coefficient is 

327 

and the drag coefficient is 

C - C, sin [€a - tan-I ef;(x)] dx -s: 
[ec,, + qp2 + 0(€3)1{4a -f;(x)] + o(63)) dx 

= $ cpl[a -j;(41 dx + €3 c,,[. -f;(x)l dz + 0(€:4) 
1 

(26) 

0 1: 
= e2CC,1 f e3CD2 f o(C4) .  

The first-order force coefficients are known from Tulin & Burkart (1955). 
The second-order lift coefficient, CL2, is 

= - 4 S : 5 [ 6 : + $ S l t a l ( t ) d t + H ( E ) + G ( ~ ) ]  0 d5, 

where H ( 5 )  = K{W- 5)}-4 (27) 

and 

Integrating the second term by parts, and noting 
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For the symmetric case, the second-order drag coefficient normalized with re- 
spect to one-half of the base height is 

where HJX) = Ks( 1 - x)-&, (32) 

in which all integrations are performed along y = 0 + 
By examining solutions (23) and (24), it  is seen that near the leading edge of 

the hydrofoil, the second-order solution behaves as the square of the first-order 
solution. The singularities associated with the first-order solution will, then, 
determine the applicability of the second-order theory, since otherwise a non- 
integrable pressure may arise. It is known that for supercavitating flow past a 
lifting hydrofoil, the first-order solution behaves like x-$ ; therefore, the second- 
order pressure is integrable. It may be mentioned here that although the pressure 
behaves like X-4 near the leading edge, the suction force is still zero because o2 
behaves like 2-4. The second-order solution for supercavitating flow past a 
symmetric strut with pointed nose yields an integrable pressure because the first- 
order solution behaves like log x. For blunt-nose symmetric struts, like the case 
of blunt-nose airfoils, the X-* singularity in the first-order solution renders the 
second-order solution non-integrable. However, existing results for correcting 
such singularity behaviour on blunt-nose airfoils (Lighthill 195 1) should apply 
equally well here since the condition a t  the trailing edge would hardly affect the 
flow in the neighbourhood of the nose. The uniformly valid pressure coefficient 
correct to the second order for a strut of nose radius p L  is 

For struts with pointed nose, Van Dyke’s (1956) rule to render the approximation 
near the nose uniformly valid may be applied to find the pressure; it  does not, 
however, contribute to the drag up to the second order. In  the lifting case, there 
exists no such rule. Since the distance from the leading edge to the stagnation 
point is of order e4, any edge correction cannot affect the force coefficients 
which are correct only to e2. 

4. Examples 
In  this section we present two examples applying the second-order theory; 

one being flow past a circular arc hydrofoil at  incidence, which includes the flat 
plate as a special case, and the other being flow past a symmetrical wedge. 
These examples are selected because their exact solutions are known. To facilitate 
writing, we shall delete the E’S in the following. 
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4.1. Circulur arc 

The equation fo(x) of a circular arc of small included angle y, which vanishes at 
0 and 1 is 

The first-order solution is 

fo(x> = 87(x) (1  - 4 + (34) 

%(6) = - [ ( a - $ y )  (1-5)t5-;-t+y(g+5)(1--)&5t+iy(3-52)1. (35) 

The homogeneous solution is easily found to be 

[ ( & - t 7 ) 2 + 3 3  a-.1- 2 7  2 H(5) = ’n --___ 

r5P -<)I9 (36) 

Most of the integrals encountered in both the second-order lift and drag expres- 
sions are elementary, though sometimes tedious. The integrations of G(5) are 
effected by a change in the order of integration. In  the lift expression, 

1 
lSY( 8 Y ) f m y  1. 

which is permissible since the residual is zero (Heaslet & Lomax 1954, 

(37) 

p. 164). 
Successive changes in the order of integration, first between 5 and t ,  then t and t‘, 
permits the evaluation of the following integral in the drag expression (30): 

Together with the first-order results, the lift and drag coefficients of a circular 

(39) 

arc at  incidence are 

C, = *.[a( 1 - i7r.a) +&7( 1 - 0.3237) - 0*607ay] + O(a3), 

and CD = i ~ r [ ( a + + y ) ~ -  ~nra3-0~314a2y-0~115ay2+0~01673]+O(a4). (40) 

It is of interest to compare these with the results of Wu (1956) to the same 
order of approximation; they are 

CL = ir[a( 1 - $ma) +&?( 1 - 0.3867) - 0*589~7] + O(a3),  

and 

For a flat plate, y = 0, then 

CD = Jn[(a + &/)2 - gna3 - 0 . 2 9 4 ~ ~ ~ 7 -  0.0675ay2 - 0-0053773] + O(a4). 

(41) CL = $7ra( 1 - ins), CD = &7ra2( 1 - fna), 
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which agree with those obtained by expanding Rayleigh's result (Lamb 1945, 
p. 102) to order a2. The lift and drag coefficients for a circular arc of included angle 
y = 16O, and for a flat plate have been calculated according to equations (39) and 
(40) and are shown in figures 3 and 3. The results of Wu (1956) for a circular arc 
hydrofoil and that of Rayleigh for a flat plate together with the linear results are 
also shown in figures 2 and 3 for the purpose of comparison. It is seen that the 
second-order correction extends considerably the range of angle of incidence in 
which the approximate theory predicts very nearly the correct force coefficients. 

/ 
/ 

Y=O" 

0.30 03(1 

V I I I 1 -I 
0 10 20 30 40 50 

a, degrees 

FIGURE 2. Lift coefficient of circular arc 
hydrofoils. -. -: y = O", Rayleigh (exact) ; 
y = 16", Wu (Levi-Civita's method). -, 
Second order; - -, linear. 

I I I I I 
5 10 15 20 25 0 

a, degrees 

FIGURE 3. Drag coefficient of circular arc 
hydrofoils. -. -. . y = O", Rayleigh (exact) ; 
y = 16", Wu (Levi-Civita's method). --, 
Second order; - -, linear. 

It is also of interest to examine the pressure along the foils, and the shape of 
the upper free streamline. To avoid excessive computation, we considered a 
flat plate at 20" incidence. The pressure distribution, as shown in figure 4, pre- 
dicted by the second-order theory is very close to the exact result everywhere 
along the plate except within 4 yo chord of the leading edge. As for the cavity 
shape, figure 5 ,  the difference between the present and the exact results is not 
discernable to this scale. 

4.2. Xymmetric wedge 
We consider a symmetric wedge of included angle 27. The first-order solution is? 

wl(z) = - 7 [3i.r-l cosh-l( - 2-4) - i], (42) 
t This result is easily obtained by first effecting the transformation (19), then the solu- 

tion to the problem in the <-plane is given by Jones & Cohen (1957, p. 17). 
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i L / L L . + x  

1 
U -?Yo 

Stagnation point at x=0.004 

/ 

X X 

FIGURE 4. Pressure distribution on a flat 
plate at  20' incidence. -.-, Rayleigh 
(exact) ; -, second order; - -, linear. 

FIGURE 5. Upper cavity shape of a flat 
plate at  20" incidence. -.-, Rayleigh 
(exact) ; 0 ,  second order; --, linear. 

0 5 10 15 20 25 

7, degrees 

FIGURE 6. Drag coefficient (based on one-half base area) of a symmetrical wedge. 
- * -, Bobyleff (exact) ; - , second order; - -, linear. 
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in which the sign of (z)* is chosen as in (19). The homogeneous solution in the 
second-order solution is 

Upon integration, we obtain the drag coe%cient normalized with respect to the 
one-half base height 

This result agrees to the order r2 with the exact solution of Bobyleff (Lamb 
1945, p. 104). Figure 6 shows a comparison of the present result with the 
exact solution and the linear solution. 

The author wishes to acknowledge many stimulating and helpful discussions 
with Mr M. P. Tulin. This work was sponsored by the Office of Naval Research 
under Contract No. Nonr-3435(00), NR 062-265. 
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